Search results for " Paramagnetic resonance"
showing 10 items of 567 documents
Dicyclopentaannelated Hexa-peri-hexabenzocoronenes with a Singlet Biradical Ground State
2021
Abstract Synthesis of two dicyclopentaannelated hexa‐peri‐hexabenzocoronene (PHBC) regioisomers was carried out, using nonplanar oligoaryl precursors with fluorenyl groups: mPHBC 8 with two pentagons in the “meta”‐configuration was obtained as a stable molecule, while its structural isomer with the “para”‐configuration, pPHBC 16, could be generated and characterized only in situ due to its high chemical reactivity. Both PHBCs exhibit low energy gaps, as reflected by UV‐vis‐NIR absorption and electrochemical measurements. They also show open‐shell singlet ground states according to electron paramagnetic resonance (EPR) measurements and density functional theory (DFT) calculations. The use of…
Synthesis and molecular and electronic structures of a series of Mo3CoSe4 cluster complexes with three different metal electron populations.
2008
The synthesis, crystal structure, and magnetic properties of [Mo 3(CoCO)Se 4(dmpe) 3Cl 3] ( 1), [Mo 3(CoCl)Se 4(dmpe) 3Cl 3] ( 2), and [Mo 3(CoCl)Se 4(dmpe) 3Cl 3](TCNQ) ([ 2](TCNQ)) (dmpe = 1,2-bis(dimethylphosphanyl)ethane; TCNQ = 7,7,8,8-tetracyanoquinomethane) cubane-type complexes with 16, 15, and 14 metal electrons, respectively, are reported. These compounds complete the series of cobalt-containing Mo 3CoQ 4 (Q = S, Se) cubane-type complexes, which allows a complete analysis of the consequences of replacing the inner chalcogen and the metal electron count on the structural, magnetic, and electrochemical properties. The experimental evidence is theoretically supported and rationalized…
UV-Photoinduced Defects In Ge-Doped Optical Fibers
2005
We investigated the effect of continuous-wave (cw) UV laser radiation on single-mode Ge-doped H2- loaded optical fibers. An innovative technique was developed to measure the optical absorption (OA) induced in the samples by irradiation, and to study its dependence from laser fluence. The combined use of the electron spin resonance (ESR) technique allowed the structural identification of several radiation-induced point defects, among which the Ge(1) (GeO4 -) is found to be responsible of induced OA in the investigated spectral region.
Pulse EPR methods for studying chemical and biological samples containing transition metals
2006
This review discusses the application of pulse EPR to the characterization of disordered systems, with an emphasis on samples containing transition metals. Electron nuclear double-resonance (ENDOR), electron-spin-echo envelope-modulation (ESEEM), and double electron-electron resonance (DEER) methodologies are outlined. The theory of field modulation is outlined, and its application is illustrated with DEER experiments. The simulation of powder spectra in EPR is discussed, and strategies for optimization are given. The implementation of this armory of techniques is demonstrated on a rich variety of chemical systems: several porphyrin derivatives that are found in proteins and used as model s…
Synthesis, molecular structures and EPR spectra of the paramagnetic cuboidal clusters with Mo3S4Ga cores
2017
Electron precise [Mo3(l3-S)(l-S)3(diphos)3Br3]Br (diphos = dppe, dmpe) incomplete cuboidal clusters with six cluster skeletal electrons (CSE) were converted into paramagnetic cuboidal [Mo3(GaBr)(l3-S)4- (diphos)3Br3] clusters by treatment with elemental Ga. The new heterobimetallic complexes with nine CSE possess a doublet ground state with the unpaired electron density delocalized over the three molybdenum atoms.
Decomposition Process of Carboxylate MOF HKUST-1 Unveiled at the Atomic Scale Level
2016
HKUST-1 is a metal-organic framework (MOF) which plays a significant role both in applicative and basic fields of research, thanks to its outstanding properties of adsorption and catalysis but also because it is a reference material for the study of many general properties of MOFs. Its metallic group comprises a pair of Cu2+ ions chelated by four carboxylate bridges, forming a structure known as paddle-wheel unit, which is the heart of the material. However, previous studies have well established that the paddle-wheel is incline to hydrolysis. In fact, the prolonged exposure of the material to moisture promotes the hydrolysis of Cu-O bonds in the paddle-wheels, so breaking the crystalline n…
Phenol compounds as new materials for electron spin resonance dosimetry in radiotherapy
2016
EPR in glass ceramics
2019
Abstract The development of novel materials requires a profound understanding of the relationship between a material's performance and its structural properties. Electron paramagnetic resonance (EPR) is a well-established technique for a direct detection and identification of paramagnetic defects in solids. This chapter provides an overview of the applicability of continuous wave EPR spectroscopy in the studies of glass ceramics focusing on transition metal (Mn2 +, Cu2 +, Cr3 +) and rare earth (Gd3 +, Eu2 +, Er3 +, Yb3 +) ion local structure analysis. EPR spectra features of the above-mentioned paramagnetic probes in glasses and glass ceramics are compared and discussed in detail. The chapt…
EPR spectroscopic characterization of persistent germyl-substituted Pb(III)- and Sn(III)-radicals.
2010
In this report we present the synthesis and the detailed electron paramagnetic resonance (EPR) spectroscopic characterization of novel trivalent lead- and tin-based radicals comprising sterically demanding germyl substituents. The investigated radicals are derived from the recently reported trihypersilyl-substituted tetryl radicals *PbHyp3 and *SnHyp3. The tetryl radicals *Pb(Ge(SiMe3)3)3 (8), *Pb(Ge(SiMe3)3)2Si(SiMe3)3 (9), *PbGe(SiMe3)3(Si(SiMe3)3)2 (10), and *Sn(Ge(SiMe3)3)3 (11) show substitution patterns derived from stepwise (9, 10) or complete (8, 11) substitution of hypersilyl groups (Hyp = Si(SiMe3)3) in *PbHyp3 and *SnHyp3 by homologous hypergermyl groups (Hge = Ge(SiMe3)3). They …
Luminescence-detected EPR of oxygen-fluorine vacancy complexes in CaF2
2009
In several CaF2 single crystals grown by the Bridgman method and doped with CaO or in addition with SrF2 or NaF a luminescence band between 470 nm and 600 nm could be excited at 212 nm, its peak wavelength depending on the doping. With photo-luminescence (PL) detected EPR five spin triplet centres were identified. Their axial fine structure constants D varied from 87 mT to 690 mT whereby the most intense spectra had the smallest D value. Theoretical calculations of the fine structure tensors and superhyperfine interactions show that the most intense and probable triplet centre consists of a pair of an OF– on a F– site next to a nearest neighbour F– vacancy which, compared to the well-known …